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Abstract. Dynamic SPECT is a relatively new technique that may potentially benefit many
imaging applications. Though similar to dynamic PET, the accuracy and precision of dynamic
SPECT parameter estimates are degraded by factors that differ from those encountered in PET.
In this work we formulate a methodology for analytically studying the propagation of errors
from dynamic projection data to kinetic parameter estimates. This methodology is used to study
the relationships between reconstruction estimators, image degrading factors, bias and statistical
noise for the application of dynamic cardiac imaging with99mTc-teboroxime. Dynamic data
were simulated for a torso phantom, and the effects of attenuation, detector response and scatter
were successively included to produce several data sets. The data were reconstructed to obtain
both weighted and unweighted least squares solutions, and the kinetic rate parameters for a two-
compartment model were estimated. The expected values and standard deviations describing the
statistical distribution of parameters that would be estimated from noisy data were calculated
analytically. The results of this analysis present several interesting implications for dynamic
SPECT. Statistically weighted estimators performed only marginally better than unweighted ones,
implying that more computationally efficient unweighted estimators may be appropriate. This also
suggests that it may be beneficial to focus future research efforts upon regularization methods with
beneficial bias–variance trade-offs. Other aspects of the study describe the fundamental limits
of the bias–variance trade-off regarding physical degrading factors and their compensation. The
results characterize the effects of attenuation, detector response and scatter, and they are intended
to guide future research into dynamic SPECT reconstruction and compensation methods.

1. Introduction

Dynamic functional imaging using positron emission tomography (PET) and compartmental
modelling is a well established methodology. More recently, developments in single-photon
emission computed tomography (SPECT) imaging agents and camera hardware have sparked
interest in performing dynamic imaging with that modality (Budingeret al 1991, Nakajima
et al1991, Chiaoet al1994); however, dynamic imaging with SPECT is more challenging than
it is for PET. The high levels of statistical noise present in dynamic SPECT data greatly limit
the confidence with which kinetic parameters can be estimated (Huesman and Mazoyer 1987,
Welchet al1995). Likewise, kinetic parameter estimates may exhibit bias arising from factors
such as attenuation, detector–collimator response, scatter, inconsistent projections and others
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Figure 1. A two-compartment model for the wash-in (k21) and wash-out (k12) of teboroxime
between the blood and the extravascular myocardial tissue.

(Linkset al1991, Smith and Gullberg 1994, Welchet al1995, Rosset al1997). Many of these
factors have parallels in dynamic PET, but the relative importance and extent of degradation
for each factor differs. The bias and noise properties of kinetic parameter estimates depend
upon how the data are reconstructed and analysed, and they are sensitive to the manner in
which compensation for image degrading factors is applied. It is important to understand
the underlying properties associated with estimating kinetic parameters from noisy data both
with and without compensation for degrading processes. A fundamental understanding of these
properties is necessary to guide future research, leading to improved methods for reconstructing
and analysing dynamic SPECT data.

There were two main objectives in this work. The first was to formulate a methodology for
studying the full solution to the problem of reconstruction and kinetic parameter estimation in
dynamic SPECT imaging. The methodology developed here provides a means for analytically
calculating the propagation of errors from the acquired data through the reconstruction and
parameter estimation steps, and allows for components of error due to bias and statistical
fluctuations to be separately studied. The interplay between the data and the analysis models
can be evaluated, and the methodology provides a framework for hypothesis testing in a
powerful manner. Furthermore the methodology utilizes the full reconstruction solution, by
which we mean the completely unregularized exact solution to the reconstruction problem.
The full reconstruction solution has received little attention in tomographic imaging literature,
and the behaviour of the full solution is not well understood.

The second objective of this work was to use the new methodology to evaluate several
fundamental issues regarding dynamic cardiac imaging with99mTc-teboroxime (Smithet al
1994, 1996, Smith and Gullberg 1994, Chiaoet al 1994). Teboroxime is a neutral lipophilic
compound with high myocardial extraction and rapid wash-out kinetics, making it well-suited
for dynamic imaging (Leppoet al 1991). Teboroxime kinetics can be modelled using the
two-compartment model shown in figure 1. Here the wash-in and wash-out parameters are
denoted byk21 andk12 respectively. The activity concentrationA(t) in the myocardium is
related to the activity concentration in the blood,B(t), and the kinetic parameters by

A(t) = (1− fv)k21

∫ t

0
e−k12τB(t − τ) dτ + fvB(t). (1)

wherefv represents the vascular fraction in the myocardial region. It has been suggested
that wash-in of teboroxime may provide a more sensitive measure of ischaemia than can be
obtained from static imaging of perfusion agents (Smith 1994, Gullberget al 1998).

We investigate the relationships between image degrading factors, reconstruction
estimators, bias and noise for dynamic teboroxime imaging, with the goal of characterizing
the parameter estimation problem so that improved reconstruction and analysis methods can
knowledgeably be developed. The effects of image degrading factors and their compensation
have not previously been studied for the full reconstruction solution in dynamic SPECT.
Furthermore, the trade-off between reduced bias and the noise increase accompanying full
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compensation for these effects has not been previously studied. The results of this work can
be used to gauge the relative importance of compensating for these effects in the context
of dynamic SPECT imaging, for which the management of statistical noise is a paramount
concern.

The issue of statistical noise brings up another consideration—regularization methods,
which are inherently biased, are commonly used to control noise effects in dynamic imaging,
but the use of statistically efficient estimation methods has not been fully evaluated. Here,
an estimator is said to be more ‘statistically efficient’ than another estimator if it produces
estimates with lower variance at the same degree of bias. It is desirable to control noise
by using statistically efficient estimators, which do not increase bias, when quantitative
accuracy is required. We have evaluated the extent to which a statistically efficient estimation
technique can replace regularization methods in dynamic SPECT imaging. The weighted least-
squares (WLS) reconstruction operator was chosen for the statistically efficient approach,
and it was compared with the unweighted least-squares reconstruction operator, which is
more computationally efficient but less statistically efficient. Other statistically efficient
reconstruction operators exist, for example maximum likelihood (which is more statistically
efficient than WLS for Poisson distributed data). The WLS operator was chosen for this work
because it represents a ‘nearly linear’ reconstruction operator for which the covariance matrix
of the reconstructed image can be analytically computed.

The study was performed using a simulation experiment which allowed for the effects of
statistical noise and image degrading factors to be studied in a manner that would not be possible
using experimentally acquired data. Data analysis was performed using the following methods,
which allow for both analytical propagation of errors and analysis of the full reconstruction
solution. The data were reconstructed using the singular value decomposition (SVD) based
generalized matrix inverse reconstruction algorithm. Weighted and unweighted reconstruction
operators were used, and model-based compensation for the image degrading factors was
successively applied. The SVD-based algorithm allows for the covariance matrices of the
reconstructed images to be calculated analytically. Tissue and blood time–activity curves
(TACs) were obtained by drawing regions of interest (ROIs) on the time series of reconstructed
images. Given the TAC and corresponding covariance data, the nonlinear fitting package RFIT
(Huesmanet al 1995, Huesman and Mazoyer 1987) was used to calculate the best-fit wash-in
and wash-out parameters and their uncertainties. These data describe the expected values and
standard deviations of the statistical distributions of the parameters that would be estimated
from noisy data, thereby providing a powerful means for analysing the bias and noise properties
for the cases studied.

2. Methods

2.1. Simulation experiment

The simulated dynamic SPECT acquisition sequentially acquired 41 time frames of projection
data over a 15 min period according to the following sampling schedule: twenty 5 s scans, ten
10 s scans, eight 50 s scans and three 100 s scans. This imaging sequence was found to have
sufficient temporal resolution during the fast initial kinetics while keeping the total number of
time frames down to a reasonably manageable number. The dynamic phantom and acquisition
particulars are given in the following subsections.

2.1.1. Dynamic phantom.A dynamic version of the MCAT phantom (Terryet al 1990, Tsui
et al 1994) was created with different activity distributions corresponding to each time frame
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Figure 2. Image of the MCAT phantom attenuation map (top left), followed sequentially by the
time series of images for the dynamic activity phantom. The changing activity in the various tissues
can be followed as the time series moves from left to right, top to bottom.

of the dynamic acquisition. Due to the memory requirements of the SVD algorithm, only a
single 2D slice of the phantom was used for the experiment. The phantom had a 36× 24 cm
body contour, and it was first created on a 192× 192 array using 2.373 mm pixels. It was
then collapsed to a 64× 64 array of 7.12 mm pixels used for the projection and reconstruction
steps of the analysis. Digitization of the phantom onto 7.12 mm pixels was subject to some
degree of aliasing, and this digitization was performed prior to generating projections in order
to separate aliasing artefacts out from the projection/reconstruction problem. A static version
of the phantom was first constructed one organ at a time, including heart, blood pool, lungs
and soft tissue background. Since the expected heart cycle duration (61 s) was much less
than the shortest scan length (5 s), no explicit frame-by-frame beating heart model was used;
however, blurring due to heart motion was included by using the MCAT beating heart model
(Pretoriouset al 1997) and computing the time-average over the cardiac cycle. The dynamic
phantom was constructed by summing each organ of the static phantom using weights (derived
from the TACs described below) for each time frame. In this way a series of 2D phantoms was
constructed, one for each time frame of the dynamic acquisition. The phantom attenuation
map and activity images are shown in figure 2.

The time–activity curves for the blood pool, myocardium and background (soft tissue and
lungs) were chosen to mimic those seen in patient studies performed at this institution. Of
special interest, the blood TAC was defined by the sum of three decaying exponentials preceded
by a 20 s ramp function, and the myocardium TAC was constructed using the blood as input
function, with wash-in and wash-out parameters of 0.8 min−1 and 0.4 min−1 respectively.
The vascular fraction in the myocardial tissue (fv) was set to zero for the purposes of this
experiment. The TACs for the blood, myocardium and background are plotted in figure 3.
Each TAC was numerically integrated over the active acquisition time for each time frame in
order to obtain the weights used to form the dynamic phantom.
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Figure 3. Time–activity curves for the simulation experiment: blood input function, extravascular
myocardial tissue and background tissue (lungs and soft tissue background).

2.1.2. Projection data. Projection data for the simulated acquisition were formed by
projecting each time frame of the dynamic phantom. The projection models and array
sizes were identical to those used later for image reconstruction, ensuring that the simulated
projections would be consistent for the reconstruction problem; in practice, aliasing artefacts
and modelling errors would likely lead to some degree of bias in the results. The results
obtained in this paper will be somewhat positively biased as compared with what can be
expected in practice because the aliasing artefacts and modelling errors were eliminated. This
approach was advantageous for this paper because, by using consistent models for projection
and reconstruction, the effects of image degrading factors could be studied separately from
other sources of error.

For each timeframe, all projection angles were assumed to be measured simultaneously.
In practice a rotating camera-based system would probably be used for dynamic SPECT;
the activity would be actively changing as the gantry is rotated for the acquisition, and data
inconsistencies between projection angles would result. Other studies have been performed to
assess the effects of using a rotational acquisition geometry for dynamic imaging (Linkset al
1991, Rosset al 1997). In order to separate these effects from those studied in this work, the
rotational geometry was not simulated here.

The projection data were simulated using a rotation-based projector (Freyet al 1993)
which modelled the effects of non-uniform attenuation, depth-dependent collimator–detector
response and scatter (Frey and Tsui 1996, Kadrmaset al 1998). The projection matrix was
calculated using line source geometries in order to provide a pseudo-3D model that accounted
for the 3D contributions of detector response and scatter. A low-energy high-resolution (LEHR)
parallel hole collimator was used with a circular orbit, and each scan consisted of 120 projection
angles evenly spaced over 360◦. Data were acquired within a 15% wide energy window centred
at 140 keV, and the camera was modelled with an energy resolution of 10% FWHM at 140 keV
and 4 mm intrinsic spatial resolution.

Several data sets were simulated, successively including the effects of attenuation, detector
response and scatter. The projection data were scaled to 1.8×106 total counts over the 15 min
acquisition when including attenuation effects. When attenuation effects were not included,
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the data were scaled to 6.3× 106 total counts, and when both attenuation and scatter effects
were included the count level was 2.1×106. Poisson noise was simulated at these count levels
so that both mean (noise-free) and noisy data sets were obtained. In the following section we
demonstrate that the noise-free projection data, which are the expected values, and the known
statistical distribution of the projection data are sufficient to analytically calculate the bias and
variance of the kinetic parameter estimates. As such, the noisy projection data sets were used
only to generate example results for a single noise realization of the data.

2.2. Reconstruction estimators

The data were reconstructed using the generalized matrix inverse (GMI) approach (Huesman
et al 1977) with SVD methods (Smithet al 1992) as briefly described here. The SPECT
imaging process can be represented as a linear system of equations

Fx̄ = p̄ (2)

whereF is the system transfer matrix,x̄ is the mean (noise-free) image vector, andp̄ is the mean
(noise-free) projection data vector. The problem of reconstruction is to obtain an estimate of
the image (̂x) from a (noisy) measurement of the projection data (p̃).

The weighted least-squares reconstructed image can be obtained by using SVD to solve
the following equation:

(FTΦ−1F)x̄ = FTΦ−1p̄ (3)

whereΦ represents the covariance matrix of the projection data. In SPECT the projection data
are Poisson distributed with uncorrelated noise, soΦ is diagonal, and its diagonal elements are
given by the means of the corresponding projection data elements (recall the variance equals
the mean for the Poisson distribution). Since the expected values of the data are generally
not known, an estimate of the covariance matrixΦ̃ must be used. See the appendix for more
details on the estimation ofΦ from measured data.

The SVD of(FTΦ̃−1F) from (3) can be written asVSVT, whereV is the unitary matrix of
right singular vectors andS is the diagonal matrix of singular values. Here we have used the
fact that(FTΦ̃−1F) is symmetric. Given a measurement of the projection data,p̃, the WLS
reconstructed image,̂xWLS, is given by

x̂WLS = VS†VTFTΦ̃−1p̃ (4)

whereS† represents the pseudo-inverse ofS.
The unweighted least-squares (LS) reconstruction is obtained by replacing the projection

data covariance matrix,Φ, by the identity matrix in (3), thereby assigning a uniform weight to
all projection data. The SVD is performed uponFTF, yieldingVLSSLSVT

LS, and the unweighted
LS reconstruction is obtained:

x̂LS = VLSS†
LSVT

LSFTp̃. (5)

The expected values of the reconstructed images directly reflect the bias, if any, in the
images. Equation (5) represents a linear reconstruction operator, and the expected value of the
unweighted LS reconstructed image is easily obtained by reconstructing the expected values,
i.e. noise-free, projection data. This calculation is a bit more subtle for the WLS case in which
the reconstruction operator implicitly depends uponΦ̃, which is estimated from̃p. The WLS
reconstruction operator is actually nonlinear in this case; however, the accuracy of estimating
Φ̃ improves with counting statistics. A very good estimate of the expected value of the WLS
reconstruction can be obtained by reconstructing noise-free projection data, which is analogous
to the limiting case of acquiring very high statistics.
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The reconstruction of a large number of images using the generalized matrix inversion
approach is both memory and computationally intensive. In order to reduce these demands, we
limited the image space to contain only those pixels inside, or within two pixels (14 mm) of, the
phantom body contour as defined by the attenuation map. This reduced the dimension of the
image space from 4096 to 1748, leading to substantially reduced computational requirements.
The SVDs and image reconstructions were performed on a Cray T916 (North Carolina
Supercomputer Center, Durham, NC), and approximately 2 CPU hours were required for
WLS reconstruction of each series of 41 timeframes. As a guide for the interested reader, we
timed a single WLS reconstruction on 1 CPU of a 300 MHz Sun Enterprise 3000. Based on
those data, we estimate that about 7 days 16 h would have been required on the Sun workstation
for WLS reconstruction of a series of 41 timeframes.

2.3. Calculation of reconstructed image covariance matrices

Given the covariance matrix of the measured data, the SVD-based GMI reconstruction approach
allows for direct analytical calculation of the covariance matrices of the reconstructed images.
Alternatively, the covariance matrices could have been estimated empirically by reconstructing
a large number of noise realizations of the data and analysing the resulting ensemble of
images. However, such an approach would have required much more computational effort
than the deterministic approach used here in order to gain the statistical power necessary to
significantly differentiate between the cases studied. We use the expected values and known
statistical behaviour of the projection data to directly calculate the covariance matrices of the
reconstructed images.

The details regarding calculation of the reconstructed image covariance matrices are
given in the appendix, along with a discussion of the validity domain as applied to SPECT
reconstruction. For the statistically weighted case, the covariance matrix of the WLS
reconstructed image is given by

COV(x̂WLS) = VS†VT. (6)

The covariance matrix for the unweighted LS reconstruction is obtained in a similar manner,
though less simplification occurs within the derivation. The resultant working expression is
written as

COV(x̂LS) = VLSS†
LSVT

LSFTΦFVLSS†
LSVT

LS. (7)

2.4. Estimation of kinetic parameters

Two sets of ROIs were drawn on the reconstructed images as shown in figure 4 in order to obtain
the blood input function and myocardium TAC. The first set of ROIs consisted of 7 pixels inside
the left ventricle (LV) chamber and 5 pixels on the LV wall. These ROIs were carefully chosen
to include only pixels entirely situated within the blood pool or myocardium of the phantom,
and the resulting TACs are used for local kinetic parameter estimates that are not biased due
to discretization errors. The second set of ROIs were chosen to be the same size as those that
would be used for regional kinetic parameter estimation in practice. Such regional parameters
would typically be measured using ROIs that span many slices and contain approximately
20–25 voxels of myocardium. Since the computational and memory demands of the SVD
algorithm limited our analysis to only a single slice, we created large ROIs that contained 22
pixels in the blood pool and 26 pixels of the myocardial wall. These ROIs essentially contain
the entire LV wall and blood pool for this slice. The TACs for the large ROIs will have noise
levels on the same order as would be seen clinically for regional parameter estimation, but
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Figure 4. The locations of the blood and myocardial ROIs as drawn on the MCAT phantom: left,
small ROIs used to estimate local kinetic parameters; right, large ROIs used to imitate estimating
regional kinetic parameters from a 3D image.

they also introduce a degree of bias due to partial volume discretization errors (some pixels
in the large ROIs contain partial components due to blood, heart tissue or background tissue).
The TACs for each ROI were obtained by averaging the pixel values in each ROI for each time
frame. Likewise, the covariance matrices of the reconstructed images were used to calculate
the variance of each ROI and the correlations between ROIs. The kinetic parameters wash-
in (k21), wash-out (k12) and vascular fraction (fv) were estimated by fitting the TACs and
tomographically acquired blood input functions to the two-compartment model using RFIT,
which also calculates the variance and correlations of these parameters using the data provided
(Huesman and Mazoyer 1987, Huesmanet al 1995).

3. Results

Figure 5 shows sample timeframes of the noise-free and noisy WLS reconstructed images
for the case in which attenuation effects were simulated in the data and compensated for in
the reconstruction. The effects of scatter and the detector–collimator response function were
neither included in the simulation nor compensated for in this case. Note that the noise-free
images represent the expectation values of the reconstructed pixel values, and that the noisy
images provide an example of what is obtained for a single noise realization of the data. The
local (small ROI) and regional (large ROI) kinetic parameters for these data are shown in
figure 6, where the indicated standard deviations were calculated using the analytical methods
described earlier (the results for noisy data provide only an estimate of the parameters and
uncertainties for that noise realization, whereas the noise-free results give the expectation
values and analytically calculated standard deviations for these random variables). Since the
analytical formulation fully describes the bias and variance of the parameter estimates, no
further results from noisy realizations of the data are presented.

The data presented in figure 6 also reveal an important detail. The data exhibit strikingly
high levels of statistical noise, especially for the local parameter estimates. The large ROI
results imitate regional parameter estimation for 3D imaging, yet these estimates still contain
considerable uncertainty due to statistical noise (standard deviations of the order of 10%
of the mean). While the noise levels are much lower than seen for the local parameter
estimation problem, they are still high enough to be a primary issue of concern for dynamic
SPECT imaging. Recall, however, that the full reconstruction solution was obtained and
that no regularization was performed. In practice the user would need to evaluate the degree
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Figure 5. Sample noise-free (top row) and noisy (bottom row) reconstructed images for the case
which included attenuation compensation but no other effects. Timeframes shown are at 1 min (far
left), 3 min (left middle), 8 min (right middle) and 15 min (far right) after injection.

Figure 6. Reconstructed TACs (arbitrary units) and modelled uptake curves for the case which
included attenuation compensation and no other effects: expected values (top row), one realization
of noisy data (bottom row). The TACs in the left column were created using the small ROIs, and
the TACs in the right column used the large ROIs. The estimated kinetic parameters are shown,
with chi-squared values for the noisy fits (38 degrees of freedom).

of statistical uncertainty acceptable for the application of interest, then regularize the data,
accepting some increase in bias in exchange for controlling statistical variations. The value of
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Table 1. Local kinetic parameter estimates (expectation value of fit± standard deviation) for each
case studied. The fitted value of the vascular fraction in the myocardial ROI (fv) is also given, as
well as the chi-squared values for the (noise-free) fits.

WLS LS
Effects Effects

included compensated k21 (min−1) k12 (min−1) k21 (min−1) k12 (min−1)
in data† for† fv chi-squared fv chi-squared

True values 0.800 0.400 0.800 0.400
0.000 n/a 0.000 n/a

None None 0.801± 0.325 0.400± 0.188 0.801± 0.370 0.400± 0.212
−0.001± 0.315 1.74× 10−4 −0.001± 0.409 1.02× 10−4

A None 3.44± 8.07 0.578± 1.31 0.993± 1.642 0.353± 0.657
0.294± 2.09 5.14× 10−2 0.297± 1.173 5.93× 10−3

A None 1.06± 0.363 0.503± 0.175
(Regularized) −0.112± 0.314 1.90× 10−1

A A 0.801± 0.211 0.400± 0.121 0.801± 0.215 0.400± 0.123
−0.001± 0.200 4.26× 10−4 −0.001± 0.214 3.64× 10−4

AD A 0.749± 0.260 0.411± 0.160 0.751± 0.264 0.410± 0.161
0.184± 0.208 1.17× 10−3 0.188± 0.220 8.51× 10−3

AD AD 0.801± 0.664 0.400± 0.377 0.801± 0.674 0.400± 0.382
−0.001± 0.610 4.56× 10−5 −0.001± 0.651 3.94× 10−5

ADS A 0.756± 0.273 0.444± 0.178 0.757± 0.276 0.445± 0.179
0.256± 0.201 1.61× 10−3 0.254± 0.210 1.33× 10−3

ADS ADS 0.801± 0.710 0.400± 0.401 0.801± 0.721 0.400± 0.407
−0.001± 0.674 3.72× 10−5 −0.001± 0.713 3.30× 10−5

ADS ADS 0.773± 0.190 0.410± 0.103
(Regularized) 0.099± 0.148 5.11× 10−2

† A = attenuation, D= detector response, S= scatter.

the results presented in this work is that they quantify the degree to which such regularization
is necessary; this is especially important when considering the use of statistically efficient
estimators (section 3.1) or when compensating for image degrading factors (sections 3.2
and 3.3).

3.1. Statistically efficient estimation

One aim of the study was to evaluate the extent to which statistically efficient estimation
methods can replace regularization methods to control the effects of statistical noise. The
answer to this question lies in comparing the standard deviations of the WLS and LS parameters
for local or regional estimates as presented in tables 1 and 2 respectively. Significant high-
performance computing resources (approximately 30 CPU hours on a Cray T916) were required
to generate these data. In accordance with theoretical predictions, the WLS reconstruction
approach consistently led to parameter estimates with lower statistical deviations than did the
unweighted LS reconstructions. The only exception was the case in which attenuation was
present but not compensated for, which led to extreme model mismatch, very high bias and
meaningless parameter estimates.

These results verify that the WLS reconstruction operator is more statistically efficient
than the unweighted LS operator. However, the reduction in standard deviation for the WLS
operator was small in all cases studied, and negligible in most cases. This was somewhat
surprising, and indicates that accurate statistical modelling may not be highly beneficial for
dynamic SPECT imaging. In many cases the increased computation burden required to use
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Table 2. Regional kinetic parameter estimates (expectation value of fit± standard deviation) for
selected cases. The fitted value of the vascular fraction in the myocardial ROI (fv) is also given,
as well as the chi-squared values for the (noise-free) fits.

WLS LS
Effects Effects

included compensated k21 (min−1) k12 (min−1) k21 (min−1) k12 (min−1)
in data† for† fv chi-squared fv chi-squared

None None 0.839± 0.236 0.457± 0.153 0.838± 0.272 0.457± 0.175
0.083± 0.167 7.49× 10−4 0.083± 0.226 4.24× 10−4

A A 0.839± 0.084 0.457± 0.054 0.839± 0.086 0.457± 0.054
0.083± 0.055 6.79× 10−3 0.083± 0.058 6.01× 10−3

AD A 0.816± 0.109 0.510± 0.076 0.818± 0.110 0.509± 0.077
0.234± 0.061 2.09× 10−2 0.235± 0.064 1.68× 10−2

AD AD 0.839± 0.222 0.457± 0.142 0.839± 0.226 0.457± 0.144
0.083± 0.159 8.12× 10−4 0.083± 0.167 7.41× 10−4

ADS A 0.812± 0.113 0.538± 0.082 0.815± 0.115 0.540± 0.083
0.301± 0.059 2.82× 10−2 0.300± 0.062 2.42× 10−2

ADS ADS 0.839± 0.239 0.457± 0.152 0.839± 0.243 0.457± 0.154
0.083± 0.176 6.78× 10−4 0.083± 0.183 6.28× 10−4

ADS ADS 0.825± 0.084 0.455± 0.048
(Regularized) 0.137± 0.050 6.71× 10−2

† A = attenuation, D= detector response, S= scatter.

statistically efficient estimation techniques may not be justified considering the marginal gain.
One could speculate that using a single, ‘average’ set of weights for the entire time series of
reconstructions would be a relatively efficient approach, both in terms of computational effort
and statistical uncertainty.

3.2. Image degrading factors

The data in tables 1 and 2 illustrate the effects that attenuation, detector response and scatter
have upon kinetic parameter estimates. Selected results are presented graphically in figure 7,
which plots the TACs and modelled uptake curves for a number of cases both with and without
compensation. These data characterize the effects of model mismatch upon the bias and noise
levels in kinetic parameter estimates; when considered in conjunction with the results of the
next section regarding full compensation, the data characterize the limits of the bias–noise
trade-off associated with these effects.

In the absence of image degrading factors, the local kinetic parameter estimates were
nearly identical to the true values, indicating that the simulations were accurately performed.
The vascular fraction in the myocardium ROI (fv) was also estimated accurately. On the
other hand, the regional kinetic parameter estimates were considerably biased. Recall that
the small ROIs used for the local parameters were carefully chosen to include only pixels
entirely situated within the blood or myocardium of the phantom, whereas the large ROIs used
for the regional parameters had some pixels partially containing multiple components of the
phantom. This resulted in ‘spillover’ between the blood, myocardial and background data,
thereby compromising the TACs and biasing the data. Because of this bias in the regional
parameter estimates, the local parameter estimates are best used to study the effects of image
degrading factors and their compensation.

Each image degrading factor introduced some degree of bias into the kinetic parameter
estimates as expected. We leave it up to the reader to assess the relative impact of each image
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Figure 7. TAC expectation values and modelled uptake curves demonstrating the effects of
attenuation, detector response and scatter, and compensation for these effects. Local kinetics
using the small ROIs are shown. The effects included in the data and those compensated for are
listed above each plot (A= attenuation, D= detector response, S= scatter).

degrading factor at the full reconstruction solution as compared to his/her preconceived notions,
though the excessive bias associated with attenuation effects deserves additional comment.
The strikingly high levels of bias caused by the uncompensated presence of attenuation effects
were somewhat surprising, and were higher than typically seen in conventional reconstructions
which do not approach the full solution. This can be attributed to the fact that, at the full
reconstruction solution, all components of the reconstructed image are forced to match the
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projection data as closely as possible. It is interesting to note that much of the structure
of the attenuation artefacts was associated with the latter singular vectors of the SVD-GMI
reconstruction. The latter singular vectors correspond to the small singular values, indicating
that these components of the image are harder to recover from the measured projections. In
order to demonstrate this point, we regularized the attenuated reconstruction by zeroing all
singular values less than 0.1% of the largest singular value. As seen in table 1, the resultant data
retained considerable bias, but this bias was much reduced as compared to the unregularized
attenuated case.

3.3. Compensation for image degrading factors

The data in tables 1 and 2 can also be used to assess the bias–variance trade-off associated
with ideal, unregularized compensation for each image degrading factor. Note that full
compensation for all image degrading factors is required in order to minimize bias, but
undesired noise increases may accompany such compensation. Compensation for detector
response and scatter effects was found to markedly increase the statistical uncertainty in
the parameter estimates. The data for uncompensated versus compensated cases bracket
the bias and noise levels for each factor. It will be useful to consider these results in the
future development of compensation methods for dynamic SPECT, since the performance of
regularized/partial compensation for image degrading factors can be expected to fall within
the limits calculated here. For example, consider the case of detector response blurring versus
compensation (items 6 and 7 of table 1). Detector response blurring caused biases of−6.4%
and +2.8% in k21 and k12 respectively. Full compensation for detector response blurring
effectively removed these biases, but increased the statistical uncertainties from 35–39% of
the mean to 83–94% of the mean. Clearly, in this case the increased sensitivity to statistical
noise associated withunregularizeddetector response compensation outweighed the benefits of
performing such compensation. Therefore, the successful application of a regularized method
of performing detector response compensation that has a beneficial bias–variance trade-off is
essential.

To demonstrate the potential benefits of performing regularization, we repeated the
analysis for the case with attenuation, detector response and scatter effects, but regularized the
WLS reconstruction by zeroing all singular values less than 0.1% of the largest singular value.
That is, the singular value spectra were truncated so that the image components most sensitive
to noise in the data were excluded from the reconstruction. We emphasize that this simplistic
regularization scheme was not optimized, but it was sufficient for demonstration purposes. The
results are shown in the final row of table 1. The compensated and regularized images resulted
in kinetic parameters with less bias (−3.4%) than in the uncompensated case (−5.5%), and
the variances were much lower than in the corresponding unregularized cases (25% of mean
versus 89%). As a result, the regularized parameter estimates for noisy data could be believed
with substantially more confidence. This example demonstrates the bias–variance trade-off
associated with regularization, as well as the potential benefits associated with regularization.
It will be important to consider these aspects when designing regularization schemes to be
used in practice.

4. Discussion and conclusions

In this paper we have formulated a methodology for analytically studying the bias and
noise properties of the full solution to the reconstruction/parameter estimation problem in
dynamic SPECT imaging. Using this analysis tool, we have studied relationships between
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reconstruction estimators, image degrading factors, bias and statistical noise in dynamic
cardiac SPECT imaging with teboroxime. One goal was to evaluate the extent to which
statistically efficient estimation techniques could replace biased regularization methods for
noise control. Unexpectedly, it was found that the WLS reconstruction operator provided
only minor reductions in noise levels as compared to the unweighted LS operator. This
result was only evaluated for the specific case studied, though we speculate that a similar
result might be obtained for other data at similar count levels. We conclude that, for some
imaging applications, the increased computational needs of statistically efficient reconstruction
operators may outweigh the benefits of using these operators. This point should be considered
in the future development of reconstruction methods for dynamic imaging.

A basic investigation into the effects of image degrading factors at the full reconstruction
solution was also performed, and ideal compensation for these factors was studied. The bias
that each image degrading factor introduced into the full reconstruction solution was calculated
in terms of the resultant bias imposed on the kinetic parameter estimates. Ideal compensation
for each degrading factor resulted in very low bias results, and the noise increase associated
with complete compensation for each factor was calculated. The resultant data delineate the
limiting ranges on the bias–noise trade-off concerning compensation for each effect. These
data are intended to guide future development of regularization and compensation methods
for dynamic SPECT by highlighting the degree of noise control required to achieve beneficial
compensation. Additionally, an example of a crude regularization approach was provided to
illustrate the potential benefits of regularization.

The results of this study suggest that careful consideration of the choices of reconstruction
algorithm, compensation methods and regularization scheme is warranted in order to obtain
accurate and precise estimates of the kinetic parameters in dynamic SPECT imaging. The
fundamental understanding of the relationships between bias and variance studied in this work
fulfils a crucial step in the future development of optimal reconstruction and compensation
algorithms for dynamic SPECT data.
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Appendix

A.1. Estimation of the projection data covariance matrix

The projection data covariance matrix,Φ, is generally not known exactly, and it must be
estimated from the measured projections,p̃. We modelp̃ to have uncorrelated noise and obey
to Poisson statistics. WhenΦ is diagonal, the diagonal elements are the variances of the
corresponding projection data, and the variances equal the means; i.e.8ij = p̄iδij . One way
to estimate the projection data covariance matrix would be to use8̃ij = p̃iδij , where the tilde
denotes that this is an estimate ofΦ. For our application this may not be the best approach. In
order to compute the WLS reconstructed imageΦ must be inverted, but the above expression
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givesΦ̃ singular if any of thep̃i are zero. In addition, this̃Φ estimate may result in a biased
image: suppose that, for a given elementj , a noisy measurement yielded̃pj = 0 but the
expected value was̄pj = 0.5. An erroneously high weight would be given top̃j and a biased
solution would result.

The above problems can be greatly reduced if a lower threshold is defined forΦ such that

8̃ij =
{
p̃iδij p̃i > λ
λδij otherwise.

(8)

In our experience, a threshold value ofλ = 1.0 gives good results when estimatingΦ̃ from
noisy projection data. We have not, however, performed a detailed investigation into the
optimal choice ofλ. In this paper a significant portion of the analysis was performed using the
expected values of the projection data. In that case the true covariance matrix is known, and we
only need to ensure thatΦ̃ is not singular by choosingλ sufficiently large to avoid numerical
errors. We heuristically chose a threshold ofλ = 0.01 for this portion of the analysis.

A.2. WLS reconstruction using SVD

Given that the noise in the projection data is uncorrelated, a statistically weighted version of
the imaging equation can be formed by multiplying equation (2) on the left by the weighting
matrix,Ψ:

ΨFx̄ = Ψp̄. (9)

To obtain the weighted least squares, i.e. minimum chi-squared, solution, the statistical weights
are given by 1/σj , whereσj is the standard deviation of projection data elementp̃j . HenceΨ
is diagonal, andΨjj = 1/σj .

Equation (9) can be solved using SVD to obtain the SVD solution; however, for practical
reasons, we generally first multiply on the left byFTΨT to obtain

(FTΨTΨF)x̄ = FTΨTΨp̄. (10)

Recognizing thatΨTΨ = Φ−1 for Poisson distributed data, equation (10) simplifies to equation
(3) of the text. Additional details on these methods can be obtained from Gullberg and Zeng
(1994), Kadrmaset al (1997) and others.

A.3. Calculation of the covariance matrix of the reconstructed images

When using SVD to obtain the WLS solution to a linear system of equations, it is well known
that the covariance matrix of the solution can be readily calculated as well (Presset al 1988).
In SPECT imaging, however, the statistical weights are not knowna priori and are estimated
from the measured projection data. As a result, the WLS reconstruction problem is nonlinear,
and calculation of the covariance matrix of the reconstructed image is more difficult. In this
section we derive an approximate expression for the covariance matrix of the WLS image,
identifying each of the approximations used.

The covariance matrix of the reconstructed image,x̂, can be calculated using (Kendall
et al 1987):

COV(x̂)ij =
M∑

k,l=1

∂x̂i

∂p̃k
8kl

∂x̂j

∂p̃l
(11)

whereM is the length of the projection data vector,p̃. Equation (11) is exact for̂x a linear
function ofp̃, and is a Taylor approximation otherwise. Also note thatΦ̃ is not knowna priori
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in practice, though it was known exactly for the simulations used in this paper. Equation (4)
from section 2.2 gives the expression for the weighted least squares reconstructed image; for
the following derivation we will write the matrix inversion explicitly [(FTΦ̃−1F)† = VS†VT].
Given the relationship betweeñΦ andp̃, we can simplify(Φ̃−1p̃)i = 1 and write

x̂WLS = (FTΦ̃−1F)†FTΦ̃−1p̃ ≈ (FTΦ̃−1F)†FT1 (12)

where1 denotes a column vector of all ones. To compute COV(x̂WLS) using (11), we need the
derivative

∂(x̂WLS)i

∂p̃k
= −

[
(FTΦ̃−1F)†FT ∂Φ̃

−1

∂p̃k
F(FTΦ̃−1F)†FT1

]
i

= −
[
(FTΦ̃−1F)†FT ∂Φ̃

−1

∂p̃k
(Fx̂WLS)

]
= [(FTΦ̃−1F)†FT]ik

(Fx̂WLS)k

p̃2
k

. (13)

Here we have used the property that∂(A−1)/∂x = −A−1(∂A/∂x)A−1 (Deutsch 1965), which
also holds for the pseudo-inverse provided that it is full-rank in the pixel direction. When
not full-rank, this property remains valid throughout the range ofA, again sufficient for this
derivation. Using (11) and (13), the covariance matrix of the WLS reconstructed image is
given by

COV(x̂WLS) = (FTΦ̃−1F)†FTΨ−1F(FTΦ̃−1F)† (14)

where

9ij ≡ p̃4
i

p̄i (Fx̂WLS)
2
i

δij ≈ p̃3
i

(Fx̂WLS)
2
i

δij ≈ p̃iδij = 8̃ij . (15)

Equations (14) and (15) lead to the working expression for the covariance matrix

COV(x̂WLS) ≈ (FTΦ̃−1F)† = VS†VT. (16)

This expression is identical to that which would be obtained for the linear WLS solution where
the weights do not depend upon the measured data; however, in the nonlinear case equation
(16) is an approximation and does not hold in all situations.

The first approximation in (15) is that̃p ≈ p̄, which improves with better counting
statistics. The second approximation in (15) is thatFx̂WLS ≈ p̃. This approximation is exact
when the data are consistent. If this is not the case, then the WLS reconstruction criterion
ensures that̂xWLS minimizes the weighted sum of squares of the difference betweenFx̂WLS

andp̃. That is, the WLS reconstruction criterion ensures that the second approximation in (15)
is the best that it can be given the measured datap̃ and the system modelF. Note that many of
the data presented in this paper were based upon simulated data in which the expected values
of the data and the actual statistical weights were knowna priori. Using these data, it was
possible to analytically calculate the covariance matrices of the WLS SPECT images to good
accuracy.

The covariance matrix of the unweighted least-squares reconstructed image can also be
calculated using (11). Recalling the equation (5) forx̂LS, we compute the derivative

∂(x̂LS)i

∂p̃k
= [VLSS†

LSVT
LSFT]k. (17)

Combining (17) with (11) leads directly to the expression for the covariance matrix

COV(x̂LS) = VLSS†
LSVT

LSFTΦFVLSS†
LSVT

LS. (18)

Note that, for the unweighted case, the least-squares reconstruction problemis linear and
equation (18) is exact.
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